Exercise 1.07

Imagine we have a tensor $X^{\mu\nu}$ and a vector $V^{\mu}$, with components $$X^{\mu\nu}=\begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix}, \quad \quad V^{\mu}=(-1,2,0,-2)$$Find the components of:
(a) $X^\mu{}_\nu$
(b) $X_\mu{}^\nu$
(c) $X^{(\mu\nu)}$
(d) $X_{[\mu\nu]}$
(e) $X^\lambda{}_\lambda$
(f) $V^\mu V_\mu$
(g) $V_\mu X^{\mu\nu}$


(a) $$ X^{\mu}{}_{\nu}= \eta_{\nu \sigma} X^{\mu\sigma} =\begin{pmatrix} -2 & 0 & 1 & -1 \\ 1 & 0 & 3 & 2 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & -2 \end{pmatrix} $$

(b) $$ X_{\mu}{}^{\nu}= \eta_{\mu\sigma} X^{\sigma \nu} =\begin{pmatrix} -2 & 0 & -1 & 1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} $$

(c) $$ \begin{align} X^{(\mu \nu)}&=\frac{1}{2}(X^{\mu \nu}+X^{\nu \mu}) \\ &=\frac{1}{2}\begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix} +\frac{1}{2}\begin{pmatrix} 2 & -1 & -1 & -2 \\ 0 & 0 & 1 & 1 \\ 1 & 3 & 0 & 1 \\ -1 & 2 & 0 & -2 \end{pmatrix} \\ &=\frac{1}{2}\begin{pmatrix} 4 & -1 & 0 & -3 \\ -1 & 0 & 4 & 3 \\ 0 & 4 & 0 & 1 \\ -3 & 3 & 1 & -4 \end{pmatrix} \end{align} $$

(d) $$ \begin{align} X_{[\mu \nu]}&=\frac{1}{2}(X_{\mu \nu}-X_{\nu \mu})=\frac{\eta_{\mu\sigma}\eta_{\nu\lambda}}{2}(X^{\sigma\lambda}-X^{\lambda\sigma}) \\ &=\frac{1}{2}\begin{pmatrix} 2 & 0 & -1 & 1 \\ 1 & 0 & 3 & 2 \\ 1 & 1 & 0 & 0 \\ 2 & 1 & 1 & -2 \end{pmatrix} -\frac{1}{2}\begin{pmatrix} 2 & 1 & 1 & 2 \\ 0 & 0 & 1 & 1 \\ -1 & 3 & 0 & 1 \\ 1 & 2 & 0 & -2 \end{pmatrix} \\ &=\frac{1}{2}\begin{pmatrix} 0 & -1 & -2 & -1 \\ 1 & 0 & 2 & 1 \\ 2 & -2 & 0 & -1 \\ 1 & -1 & 1 & 0 \end{pmatrix} \end{align} $$

(e) $$ X^{\lambda}{}_{\lambda}=\delta ^{\nu}_{\mu}X^{\mu}{}_{\nu}=\underbrace{ -2+0+0-2 }_\text{from (a)}=-4 $$

(f) $$ V^{\mu}V_{\mu}=V^{\mu}\eta_{\mu \nu}V^{\nu}=1\cdot(-1)+2^{2}+0^{2}+(-2)^{2}=7 $$

(g) $$ V_{\mu}X^{\mu \nu}=\eta_{\mu\sigma}V^{\sigma}X^{\mu \nu} =\begin{pmatrix} 2 & 0 & 1 & -1 \\ -1 & 0 & 3 & 2 \\ -1 & 1 & 0 & 0 \\ -2 & 1 & 1 & -2 \end{pmatrix}\cdot\begin{pmatrix} 1 \\ 2 \\ 0 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \\ 1 \\ 4 \end{pmatrix} $$

Comments