Exercise 2.06
Consider $\mathbb{R}^{3}$ as a manifold with the fiat Euclidean metric, and coordinates $\{x, y, z\}$. Introduce spherical polar coordinates $\{r, \theta, \phi\}$ related to $\{x, y, z\}$ by
$$
\begin{align}
x&=r\,\sin \theta\,\cos \phi \\
y&=r\,\sin \theta \sin \phi \\
z&=r\,\cos \theta
\end{align}
$$
so that the metric takes the form
$$
ds^{2}=dr^{2}+r^{2}\,d\theta^{2}+r^{2}\sin ^{2}\theta \,d\phi^{2}
$$
(a) A particle moves along a parameterized curve given by
$$
x(\lambda)=\cos \lambda,\quad y(\lambda)=\sin\lambda,\quad z(\lambda)=\lambda.
$$
Express the path of the curve in the $\{r, \theta, \phi\}$ system.
(b) Calculate the components of the tangent vector to the curve in both the Cartesian and spherical polar coordinate systems.
(a)
$$ \begin{cases} r(\lambda)=\sqrt{ 1+\lambda^{2} } \\ \theta(\lambda)=\arctan(1/\lambda) \\ \phi(\lambda)=\lambda \end{cases} $$
(b)
In cartesian coordinates
$$ V^{\mu}=\frac{d}{d\lambda}\begin{pmatrix} \cos\lambda \\ \sin\lambda \\ \lambda \end{pmatrix} =\begin{pmatrix} -\sin\lambda \\ \cos\lambda \\ 1 \end{pmatrix} $$
In spherical polar coordinates
$$ V^{\mu}=\frac{d}{d\lambda}\begin{pmatrix} \sqrt{ 1+\lambda^{2} } \\ \arctan(1/\lambda) \\ \lambda \end{pmatrix} =\begin{pmatrix} \frac{\lambda}{\sqrt{ 1+\lambda^{2} }} \\ \frac{-1}{1+\lambda^{2}} \\ 1 \end{pmatrix} $$
Comments
Post a Comment