Exercise 2.08
Verify (2.78): for the exterior derivative of a product of a p-form $\omega$ and a q-form $\eta$, we have $$ d(\omega \land\eta) =(d\omega)\land \eta + (-1)^{p}\;\omega \land (d \eta ) $$
$$
\begin{align} \\
d(\omega \land\eta)
&= (p+q+1)\partial_{[\mu_{1}}(\omega \land \eta)_{\mu_{2}\dots\mu_{p+q+1}]} \\
&=(p+q+1)\frac{(p+q)!}{p!\,q!}\partial_{[\mu_{1}}\omega_{[\mu_{2}\dots\mu_{p+1}}\eta_{\mu_{p+2}\dots\mu_{p+q+1}]]} \\
&=\frac{(p+q+1)!}{p!\,q!}\partial_{[\mu_{1}}\omega_{\mu_{2}\dots\mu_{p+1}}\eta_{\mu_{p+2}\dots\mu_{p+q+1}]} \\
&=\frac{(p+q+1)!}{p!\,q!}\Big(\eta_{[\mu_{p+2}\dots\mu_{p+q+1}}\partial_{\mu_{1}}\omega_{\mu_{2}\dots\mu_{p+1}]}+(-1)^{p}\omega_{[\mu_{2}\dots\mu_{p+1}}\partial_{\mu_{1}}\eta_{\mu_{p+2}\dots\mu_{p+q+1}]} \Big) \\
\end{align}
$$
$$
\begin{align}
(d\omega)\land \eta
&=(p+1)\partial_{[\mu_{1}}\omega_{\mu_{2}\dots \mu_{p+1}]}\land \eta_{\mu_{p+2}\dots \mu_{p+q+1}} \\
&=(p+1)\frac{(p+q+1)!}{(p+1)!\,q!}\eta_{[\mu_{p+2}\dots \mu_{p+q+1}}\partial_{[\mu_{1}}\omega_{\mu_{2}\dots \mu_{p+1}]]} \\
&=\frac{(p+q+1)!}{p!\,q!}\eta_{[\mu_{p+2}\dots \mu_{p+q+1}}\partial_{\mu_{1}}\omega_{\mu_{2}\dots \mu_{p+1}]}
\end{align}
$$
$$
\begin{align}
\omega \land (d\eta)
&=\omega_{\mu_{2}\dots \mu_{p+1}}\land(q+1)\partial_{[\mu_{1}} \eta_{\mu_{p+2}\dots \mu_{p+q+1}]} \\
&=(q+1) \frac{(p+q+1)!}{p!\,(q+1)!}\omega_{[\mu_{2}\dots \mu_{p+1}}\partial_{[\mu_{1}} \eta_{\mu_{p+2}\dots \mu_{p+q+1}]]} \\
&=\frac{(p+q+1)!}{p!\,q!}\omega_{[\mu_{2}\dots \mu_{p+1}}\partial_{\mu_{1}} \eta_{\mu_{p+2}\dots \mu_{p+q+1}]}
\end{align}
$$
So we indeed find the relation $(2.78)$.
$$
\boxed{ d(\omega \land\eta) =(d\omega)\land \eta + (-1)^{p}\;\omega \land (d \eta )}
$$
Comments
Post a Comment